The Unreasonable Effectiveness of the Fourier Transform

Joshua Wise June 2025 Crowd Supply Teardown

@joshua@social.emarhavil.com

The Unreasonable Effectiveness of the Fourier Transform

The Unreasonable Effectiveness of the Fourier Transform

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

Princeton University

https://doi.org/10.1002/cpa.3160130102

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

Princeton University

https://sci-hub.se/https://doi.org/10.1002/cpa.3160130102

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

> EUGENE P. WIGNER Princeton University

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

> EUGENE P. WIGNER Princeton University

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

 $(x-\mu)^2$ $f(x) = \frac{1}{\sqrt{2\pi^2}}e$ $2\sigma^2$

• A quick refresher on the frequency domain

Using it to our advantage with OFDM

 How OFDM solves almost every problem ever

Accelerated Tech

 there is a transformation between time and frequency domains

 when we make certain transformations in the time domain, they have other predictable transformations in the frequency domain

Orthogonal Frequency-Division Multiplexing

• A quick refresher on the frequency domain

Using it to our advantage with OFDM

 How OFDM solves almost every problem ever

• A quick refresher on the frequency domain

Using it to our advantage with OFDM

 How OFDM solves almost every problem ever

INSIGHT: Things that happen in the real world happen mostly as LTI (Linear Time-Independent) transformations, which are a lot easier to pick apart in frequency

Multipath

Multipath

• • •

- LO drift using phase data from pilots to move your LO
- Doppler shift ("it's like LO shift, but all the pilots move differently")
- Hierarchical data different modulations on different subchannels for different signal strengths — can't do that with a single bit stream SERDES!!
- OFDMA / multiple transmitters if you synchronize everyone at once, you can have multiple people talk on the same channel by giving them each different subchannels

 Cross-interleaving in time and frequency (logically adjacent bits can and should go in different symbols and different subchannels to mitigate burst errors)

Convolutional codes on top (soft decode)

Reed-Solomon / BCH / ... codes on top (get the right answer)

• A quick refresher on the frequency domain

Using it to our advantage with OFDM

ever

How OFDM solves almost every problem

Analog and Digital TV (DVB-T) Signal Generation

News

(Jun 13, 2005) First public release

What is it ?

This is not a hoax ! With a PC running Linux and a recent VGA card, you can emit a real digital TV signal in the <u>VHF band</u> to your <u>DVB-T</u> set-top box.

DVB-T emitters are usually very expensive professional devices. Now with a standard PC you can broadcast real DVB-T channels !

Copyright (c) 2005 Fabrice Bellard.

Fabrice Bellard - https://bellard.org/

initial commit before I start reworking everything

Joshua Wise committed on Aug 11, 2009

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

Princeton University

Joshua Wise June, 2025

Resources for this talk: https://joshuawise.com/resources/ofdm/

Web: https://joshuawise.com/ Work: https://accelerated.tech/ E-mail: joshua@accelerated.tech Fediverse: @joshua@social.emarhavil.com

